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This is the final report on Contract AFOSR-83-0228, which funded our research on
statistical signal processing for a period of three years, between July 1, 1983 and June

30, 1986. Section II provides a description of work done in the period 1983-1985 and

Section III describes recent results, obtained in 1985-1986. »
’
L. Introduction
The primary objective of our research is to develop efficient and numerically
stable algorithms for nonstationary signal processing problems by understanding and 3
exploiting special structures, both deterministic and stochastic, in the problems. We E
also strive to establish and broaden links with related disciplines, such as cascade filter :Z
synthesis, scattering theory, numerical linear algebra, and mathematical operator theory
for the purpose of cross fertilization of ideas and techniques. These explorations have :
N

led to new results both in estimation theory and in these other fields, e.g., to new

orthogonal cascade digital filter structures, new algorithms for triangular and QR
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~~ factorization of structured matrices and new techniques for stability testing.

For several years, the guiding principle in these studies has been the concept of
(Toeplitz-oriented) displacement structure (Kailath, Kung and Morf, (1979)), which
generalized and subsumed our earlier work on fast (Chandrasekhar) control and
estimation algorithms for state-space models (Morf, Sidhu and Kailath, (1974)).
Several authors have since picked up these ideas in a number of fields. A notable
such work is a recent book by Heinig and K. Rost of East Germany, entitled
“Algebraic Methods for Toeplitz-Like Matrices and Operators.”‘! A contribution of
this book is the introduction of a number of different displacemer;t rank concepts for

not only Toepiitz-like operators but also Hankel-like, Vandermonde and Hilbert

operators. Somewhat contemporaneously, in the Ph.D. research of H. Lev-Ari (parts

of which were summarized in our AFOSR proposal submitted March 1983), we
introduced a generating function characterization that also lends itself to generalization
to a large class of structured matrices. Moreover, as we shall briefly describe below,
this approach introduces a natural geometric significance to the theory, which allows a
number of other interesting developments, e.g., studies of various problems in system
theory, such as minimal realization, Padé approximation, control design, and a variety
of root distribution (stability) problems for polynomials. Also, connections of the
generating function approach to the theory of inverse scattering were clarified during
this research, yielding useful generalizations and a unified fraraework for the derivation

of algorithmic alternatives for the solution of the above-mentioned problems.

In particular, the topic of root distribution problems for polynomials has led our

enquiries in a somewhat different direction. We started with some recent results of Y.
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Bistritz (Proc. IEEE, September 1984), in which he obtains several new tests for the
root distribution of polynomials with respect to the unit circle that needed only half the
number of multiplications (and the same number of additions) as the well known
Schur-Cohn (or equivalently the Jury-Marden table) test (Jury, (1964)). Now
estimation theorists have long known that the Schur-Cohn test is essentially a reverse
(degree-reducing) form of the fast Levinson algorithm for solving Toeplitz linear
equations. It is therefore reasonable to expect that similar reductions in compu.ational
complexity could also be obtained for the Levinson algorithm itself, and this
possibility has now been explored in some detail. In particular, we have developed
three classes of reduced complexity Levinson-type algorithms and have demonstrated
the relationship between them (Bistritz, Lev-Ari and Kailath, (1986)). Moreover, we
have shown that these algorithms are essentially the only ones providing such
complexity reduction. An interesting fact is that the saving is achieved by using
three-term  (rather than two-term) recursions and propagating them in an
Impedance/lAdmittance domain rather than the conventional scattering domain. Our
results apply both to Toeplitz and to close to Toeplitz systems. Moreover they provide
a general method for reducing computational requirements in various recursive
algorithms, e.g. adaptive least-square lattice algorithms. Bistritz is a postdoctoral
scholar at Stanford, and these results and several related ones were developed with
him.

The QR factorization of a matrix A is closcly connected with the triangular
factorization of A'A. Recently we have shown that the displacement rank of a

product of two matrices does not exceed the sum of the displacement ranks of the

individual matrices. This result made it possible to develop a fast algorithm for QR
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factorization of matrices with a displacement structure, and in particular for Toeplitz
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matrices (Chun, Kailath and Lev-An, (1986)).
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I1. Exploiting Generalized Displacement Structure

We originally started (in the late seventies) with the following definition. A

symmetric matrix R has a displacement structure if the difference

_IR:=R-ZRZ", Z=(§ I

has low rank. Note that Z is the lower shift matrix with ones on the first
subdiagonal and zeros everywhere else. This definition was motivated by the fact that
for both Toeplitz matrices and for inverses of Toeplitz matrices the displacement rank
(ic.. the rank of _|R) is 2. We have shown in previous work (largely supported by
AFOSR) that the displacement concept was a key tool for developing fast algorithms
of many kinds, including factorization and inversion of Toeplitz and near-Toeplitz
matrices, and to fast (gencralized Levinson and Schur) algorithms for solving linear
systems with such coefficient matrices. Not surprisingly, these results led naturally to
cascade orthogonal structures for the prediction of nonstationary processes (Lev-Ari
and Kailath, (1984)). We have also found that the same concept is tightly connected
to the more general problem of cascade filter synthesis in network theory and digital
filtering as well as to a variety of inverse scattering problems (some references are Rao

and Kailath, (1984, 1985), Bruckstein and Kailath (1986)).

Recently we have extended the concept of displacement structure to a very broad
family of structured matrices, including Hankel matrices and their inverses, sums of
Toeplitz and Hankel matrices and several others (Lev-Ari and Kailath, (1986)). The

generalized displacement of a matrix R, is defined as

N
VR := Y dZ'RZ"Y . (1a)
k=0

PN
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where the asterisk (*) denotes Hermitian transpose (complex conjugate for scalars). y
This is characterized by a (Hermitian) displacement matrix J,, - _
At
), = {dy; 0<kl<N} (1b) 3
bt
R+
The previous notion of displacement corresponds to the particular displacement matrix ;
.
1 0 -
Jd = = JT K
0 _1 P
r
while the displacement notion used by Heinig and Rost (1984) for Hankel matrices, ‘
F
corresponds to the displacement matrix ;
;
0 —j 2
Ja= =Jr
0
We have shown that efficient triangular factorization of a Hermitian matrix R can be by
formulated for all displacement matrices whose inertia is (1,1). This means that J,
must have the form R
L of , -
Jg=4A A (2) )
0 -1 -
where A is any matrix with two columns of arbitrary lengths. :
.
The concept of displacement structure and its properties are more conveniently N
.
described in terms of generating functions. The generating function of a matrix R is .
a power series in two complex variables, viz., N
Rizw):={1 z 22 .JR[l w w? ) 3) "
The displacement V, R of a matrix has the generating function d(z,w)R(z,w), where o
{(z,w) is the generating function of the Hermitian matrix J,, viz., 4
ol
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N
dizw) = Y duz"(w')' 4)
k=0

Thus the generating function of a Hermitian matrix with a displacement structure has

the form

G(z) J G'(w)

R@w) = d(z,w)

()
where J is any constant nonsingular Hermitian matrix. The triple {d(z,w),G(2).J} is
called a generator of R(z,w).

We have shown (Lev-Ari and Kailath, (1986)) that efficient triangular
factorization of R is possible if there exists a matrix function ©(z) that satisfies the

matrix equation

d(z,w)

OO W) =J — 2 o)

JMJ (6a)
where
M := G*(0O)R1(0,00G(0) = M" (6b)
We have also shown that (6) has a solution if, and only if,
d(z,w) = AzWA (W) )]

which is the generating function version of (2). The (nonunique) solution of (6) is

_d__dzy
O@z) = {l 220000 JM} U (8a)

where U is any constant matrix such that

uJu' =J (8b)

and T is any complex constant such that

7_e
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d(t,t) =0 (8¢)

The factorization of R is obtained via the recursion
G"_H(Z) = G"(Z)@"(Z) i= 0,1,2,... (9)

where ©;(z) have the form (8). This algorithm requires o(n?) computations to
factor a structured nxn matrix, in contrast to the conventional LDL® algorithm

which requires 0(n3) operations to factor an arbitrary matrix.

The generalization of the displacement concept has opened several new avenues
of research, which we are currently pursuing. We have found that a family of so-
called Bezoutian matrices arising in the theory of resultants of polynomials, with
applications to topics such as testing for coprimeness, root distribution, compensator
design, etc., also has a displacement structure. Moreover, this connection has
suggested a new geometric interpretation for the displacement function d(z,w). Since
d(z,2) 1is real for all z, we can define a partition of the complex plane into three
mutually exclusive sets, viz.,

Q, ={z; d(z,2) >0}

Qy:={z; d(z,2) = 0} (10)

Q_ :={z; d(zz) < 0}
Notice that the curve €, is the boundary of the domains Q,, Q_. While the original
displacement concept turns out to be associated with the unit circle 7, and the Hankel
displacement is associated with the real line R, other curves may also be considered.
This observation has also revealed a surprising connection with the thcory of

orthogonal polynomials on arbitrary plane curves.
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On the fundamental theoretical level we made connections with the work of L.
De Branges, H. Dym and P. Dewilde on reproducing kernel Hilbert spaces associated
with plane curves. The link connecting this topic with the work of Soviet
mathematicians (Livsic, Brodskii, Krein, Potapov) on operator colligations and J-
unitary operators appears to be the concept of systems (operators) that are J-lossless
with request to a curve. This concept underlies our work on factorization and cascade
filter synthesis, as well as the very recent work of Prabhakara-Rao and Dewilde (1984)
on state space models for such systems. In fact, our equation (6) implies that ©(z) is
J-lossless, i.e.,
Oee'(2) <) ze Q,
Q:)e'(2)=J e Q (11)
QzWe'2)2J ze Q.
It is interesting to notice that Prabhakara-Rao and Dewilde start with (11) and show

that any finite-state solution of (11) must essentially have the form (8).
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I Recent Results

Immitance-Domain Three-Term Recursions

The structured gencrating functwn Kiowo 0s not alteoted ot owy g

generator  Adizoey, Gisy, Jowith the equivaient generator 00 o 00 o] Iy
where T s an arbitrary nonsingular constant matrix We masy therctore 0w

to minimize the computational requirements of our fast tacionzator pre et o b
.
particular, we have observed that when dtzw) = 1 - zw e when (20 1 nie

circley, then the chowce

1

[

results i SO reduction in the number of multuphcations involved i the moo e o
We used this observaton 1o transform the Levinson algorithm for Toeplity and oo

Toephtz mutnices. vz,

with mitial conditions,
aflay=1 . bioy=p . T

into a4 computationally-improved recursion, viz

fll(:) ‘;"I ] /(n () [:‘1 - l][‘r: . Z)
[

L',l(:) B 2\’"1i () ]*‘I\” S B )
folz) =\ pll4+p) | gotz)y =l (s ;

4

4
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olving the polynomials {f,(20.2,(2)} which are obtained from {a,(2),b,(z)} via

fal2) [1 1 ] a,(z)
vLl2) = Va 1 =1) |\b(2)] Yn# 0 (16)
Ao s sastabie seahing factor.

crparson of t14) wath (15) shows that while the number of multiplications
novs reduced by the wransformation (13), the number of additions has, in fact,
0 htturns out that the increase in the number of additions can be avoided by

cooothe o term recursion (15), which involves both f,(z) and g,(z) into a

vorer e recursion nvolving only one of these the polynomials. The three-term

7071 has the form
Vrnl(l_l‘n»]) W
D) T e S D (2) = ——(1-kD) (D (17)
Vn(l_k’l) n—-1
AU snnar redursion for go(s).

A suitahie choice of the scaling factors y, leaves only one nontrivial coefficient
in thiy recursion. Since this can be done only in three ways, there are three

computatonally-etficient forms of the recursion (17), namely,

fo(2) = B (c+D)f(2) — 2, (D),
far () = @D = Azf (), (18)
M tfn1(2) = (1) (D) — 2f,1(2)

The conventional formulation of the Levinson recursion (14) can be related to

transmission-line mndels (sce, ¢.g., Kailath and Lev-Ari, (1984) and Bruckstein and

i )

ORI

-
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Kailath (SIAM Review, accepted, 1986/7)). In particular, the ratio b,(z)/a,(z) can be
interpreted as the scartering function of a transmission line consisting of a cascade of
(uniform) sections with different characteristic impedances. On the other hand the
ratio g,(2)/f,(z) can be interpreted as the impedance (or admittance) function of the
same transmission line. For this reason we shall say that the original recursion (i4) is
expressed in the scartering domain, whereas the transformed recursions (15) or (17)
are expressed in the immitance domain.! We first derived immitance domain
algorithms as inverse scattering procedures for discrete transmission-line models in
Bruckstein and Kailath, SIAM Review, 1986/7, however we were not interested there

in computational complexity issues and did not recognize the reduction in operation

counts.

The immitance-domain version of the Levinson algorithm is also useful in the
efficient solution of problems involving the so-called singular predictor polynomials

(Delsarte, Genin, Kamp and Van Dooren, (1982)), such as Pisarenko’s harmonic

retrieval technique.

Bezoutians

Bezoutians are structured matrices B whose generating function has the form

B(Z,W) = p(Z)[q”(w)]‘ _ (](Z)[pf(“/)]‘
(1 241 w]

(19

where In{J;} = {1,1}, p(2),q(z) are arbitrary complex polynomials, and the sharp
(#) denotes a suitably defined polynomial transformation that reflects the zeros of a

polynomial with respect to the circle € defined by d(zov) =[1 zJ 1 w]". In

fBodc (1945) coined the term immutance 1o denote both impedance and admittance
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work in progress, we have shown that the square matrix B whose size equals N
max{deg p,deg q} has a rank deficiency equal to the degree of the greatest common
divisor (divisor) of p(z)q(z), and that our factorization procedure efficiently computes “
this sod. Moreover, since J; can be selected in many ways, we have a large variety
of procedures at our disposal, with different computational requirements and numerical
behavior. In addition, we can apply equivalence transformations of the form 3
ip(z) q(2)] - [p(2) q(z)]T'l to further modify our factorization procedure. For bs
instance, we can use the transformation .
.
[ N
T=—
24
to obtain the expression f
3
. b(D)a*wW)]" - a()[b*(w)]" .
(1 2V fw wl .
3
where a(z),b(z) are arbitrary complex polynomials. Finally, we can transform the f-
two-term factorization recursions into a three-term form and examine the complexity
»
and numerical robustness of the resulting procedures. »
-
When we make the specific choice ¢(z) =p“(z) in (19) the Bezoutian becomes <
Hermitian. In that case, it is known that the inertia of B serves to locate the zeros of .
the complex polynomials p(z) with respect to the curve €, We have a new simple ,
)
proof of that result; moreover, our previously mentioned fast factorization procedures,
both in two-term and in three-term form, can efficiently establish the inertia of B. We 4
have gained some insight into the problem of singulanty (i.e., singular leading minors 5
in B) and shown how to avoid it in three-term recursions. We intend to apply this N
.
N
-
h )

B S S N N i S S A S Ny SRR
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concept to study the occurrence of the singularities in two-term recursions and to

devise a simple cure to this problem.

Symmetric polynomials play a central role in the theory of Bezoutians. These are
polynomials for which p*(z) = p(z). If we restrict a(z) and b(z) in (20) to be
symmetric the Bezoutian becomes Hermitian, and consequently the computational
requirements of its factorization procedure reduce by a factor of 2. Thus the ged of
two symmetric polynomials can be computed with half the number of computations
required for arbitrary complex polynomials. In particular, if we choose J;=Jg in
(20), the polynomials a(z), b(z) must have real coefficients and the corresponding
factorization procedure coincides with the partial realization algorithm of Kalman. We
intend to exploit this observation to examine in detail the possibility of constructing

computationally-improved alternatives to the known partial realization algorithm.

Another fascinating observation relates Bezoutians to measures defined in circles.
We have shown that the inverse of a positive definite Bezoutian is the moment matrix
of a positive measure defined on the same circle as the Bezoutian. This observation
provides a key to the extension of the notion of Bezoutians to curves other than

circles, which we intend to study in the future.

QR Factorization

The factorization of a matrix into a product QR where Q is an orthogonal
matrix and R is upper triangular is a key step in the eigenanalysis of this matrix. It
15 also instrumental in the solution of linear systems of equations involving matrices

that are not strongly regular. Recently Cybenko (1985) has proposed a method for

computing the singular value decomposition of a matrix via QR factorization.
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QR factorization of a matrix A is closely connected with the triangular

factorization of A"A since
A’A=R'Q'QR=R'R
which proves that R* is the (unique) lower-triangular factor of A*A. Thus OR

factorization can be efficiently carried out if A*A has a displacement structure. We

have shown, in fact, that if
rank(A - ZAZ") = o
then
rank(A*A — ZA*AZ") < 2a + 1

so that the displacement structure for A is inherited by the product A*A (Chun,
Kailath and Lev-Ari, (1986)). Moreover, we have shown how to construct a generator
of A®A when a generator for A is known. Once as generator of A*A has been

computed the QR factorization of A is obtained in O(ctn?) operations where o is

the displacement rank of A.

Our previous work in this area has focused on the Toplitz-oriented notion of
displacement, i.e., on the displacement function d(z,w) = 1 — zw'. This enabled us to
derive procedures for fast QR factorization of Toeplitz and close to Toeplitz matrices.
We intend to extend the same ideas to other displacement functions in order to
broaden the scope of applicability of our fast QR factorization procedures, e.g., to

Hankel and Vandermonde matrices.

In another direction we intend to examine the applicability of equivalence

transformations and three-term recursions to further reduce the computational

" \I'll'n’*\"h)\.. '.\', . .“‘. ".\', . ' '.\ o .\ -\’ K '.-“ -.‘.:'. \_."“..\ '..'.-\:..‘:.‘-.. o B "'..’- -'-,"-."-C'*.'*J’ v y
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complexity of our QR factorization procedure.

Connection to Inverse Scattering Theory

Connections between scattering theory and the displacement structure of covariance
matrices was a topic that received much attention during the past few years. It was
discovered that there are natural mappings between transmission-line structures, and
other wave-propagation models, and the structure of fast algorithms for factoring or
inverting covariance matrices with displacement structures. These results are described
in papers by Kailath, Bruckstein and Morgan (1986) on fast factorization via
transmission-line models and Kailath and Lev-Ari (1985) on mappings between
covariances and physical systems. It turned out as a result of this research that the
factorization algorithms are in fact solving inverse scattering problems, problems that
require the recovery of layered, one-dimensional, scattering medium properties from its
response to a probing input. The input-response pairs are the scattering data from
which the parameters of the layered medium have to be determined. It turns out that
the most straightforward approach to inverse scattering problems is based on a careful
analysis of the causal wave-propagation, combined with the local properties of the
scattering medium. This approach led to the development of a unified theory of inverse
scattering, based on difference, or, in the continuous case, on differential equations.

Several interesting results in inverse scattering theory are discussed in the papers by

Bruckstein, Levy and Kailath (1985), Bruckstein and Kailath (accepted to SIAM
Review, 1986/7). The results encompass several differential algorithms that were

discovered by various researchers working in different fields such as, geophysics,
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distributed systems and transmission-line synthesis, speech research connected to

pressure-wave propagation in acoustic tubes, mathematics and mathematical physics.

The classical theory of inverse scattering, which starts from the physical problem
of determining potentials from quantum scattering experiments, was however based on
solving nested sets of integral equations (associated to the names of Gelfand-Levitan,
Marchenko, Krein and Gopinath-Sondhi) rather than propagating differential
algorithms. The connections between these approaches also became clear during this
research, and led to the realization that when the structure of the matrix/integral
equations is exploited i.e., when the so-called fast algorithms for solving
matrix/integral equations having Toepliz, Hankel or Toeplitz+Hankel structures are
used, we obtain difference/differential methods that closely resemble the direct
differential methods that exploit the structure of the scattering medium directly. The
algorithms are similar, however, not identical, and this was an important point to sce.
It was then observed that the fast algorithms derived in conjunction with integral
equations-based methods for inverse scattering also exploit implicitly the medium
structure, however in a different way: while the differential methods use ‘‘layer-
pecling”, i.e. they identify the next layer of the medium and then propagate the
signals through it to synthesize scattering data for the medium portion starting one
layer deeper, the fast algorithms for integral equations use the same scattering data and
propagate it through the entire portion of medium that is alrcady recovered. So, the
information for identifying the next medium layer is gotten by propagating the original
scattering data through the already identified portion of the scattering medium and
when the next medium layer is identified it is adjoined to the already known medium

section. For this reason we call the fast integral equations-based algorithms “‘laver
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adjoining" algorithms. The above-described alternatives for doing inverse scattering,
i.e. layer-peeling and layer-adjoining turned out to be quite general processes that can
be applied to a variety of problems. In fact we recognized that the classical problem of
partial realization theory falls very nicely in this scattering framework, and the above
inversion alternatives readily yield a unified picture of the algorithmic alternatives one
has in solving this problem (see Bruckstein and Kailath, accepted ASSP Magazine

paper, 1986/7).

Computationally, the layer-peeling and adjoining algorithms have the same
complexity counts (O(N?)); however the layer adjoining methods require the
computation of inner-products (to propagate the original scattering data through the
already identified layers). An inner product is a computational bottleneck in parallcl
implementations since a long addition requires O(logN) time, even with N processors.
The layer-peeling algorithms, which avoid explicit computations of inner products by
propagating the scattering data through each identified layer, are more suitable for

parallel implementations.

Direction Finding, Signal Resolution and Covariance Structures

Another avenue of research duning the period of our contract was the use of covanance
structures in processing signals received by an arrav of detectors. The basic results in
this direction concentrated first on applying an aigonthm of R. Semidt, called Muluple
Signal Charactenzation or MUSIC. developed in the context of direction finding with
antenna arrays, to spatio-temporal spectral analysie (Wax, Shan and Kailath, 1984) and

to a wealth of signal resolution problems (Bruckstemn, Shan and Kailath, 1985, and the

| X AP
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thesis of M. Wax). Several important results were also obtained on the basic direction N
finding problem (the paper Optimum Localization of Multiple Sources in Passive
Arrays, by Wax and Kailath, was awarded the senior paper award of the ASSP Society
of the IEEE), on dealing with coherent sources, often arising in multipath situations,
see. e.g. Shan, Wax and Kailath (1985), and on the determination of number of

sources by information theoretic criteria (Wax and Kailath, 1985).
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